In vitro effect of meconium on the physical surface properties and morphology of exogenous pulmonary surfactant.

نویسندگان

  • K. H. Park
  • C. W. Bae
  • S. J. Chung
چکیده

The pathophysiology of meconium aspiration syndrome(MAS) is related to mechanical obstruction of the airways and to chemical pneumonitis. Meconium is also suggested to cause functional deterioration of pulmonary surfactant. Recent studies have reported that meconium inhibits the physical surface properties of pulmonary surfactant, and that administration of exogenous surfactant may provide therapeutic benefits in animal models or infants with respiratory distress due to MAS. To assess the effects of meconium on physical surface properties, especially the changes on the air-liquid interface and hypophase of pulmonary surfactant in vitro, we studied the following findings; a) the surface spreading rate(SSR) and the surface adsorption rate(SAR), b) the viscosity, c) the electron microscopic changes, on a series of mixtures with various concentrations of lyophilized human meconium and Surfactant-TA(SurfactenTM). The human meconium has significantly increased the surface tension of SSR and the viscosity of pulmonary surfactant, but had decreased the surface pressure of SAR of surfactant, and changed the electron microscopic findings of surfactant. We have concluded that these findings support the concept that meconium-induced surfactant dysfunction may play a role in the pathophysiology of MAS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

BACKGROUND Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM) and stereology allow...

متن کامل

In vitro inhibition of biophysical surface properties and change in ultrastructures of exogenous pulmonary surfactant by albumin or fibrinogen.

In order to observe the effects of serum albumin and fibrinogen on biophysical surface properties and the morphology of pulmonary surfactant in vitro, we measured the surface adsorption rate, dynamic minimum and maximum surface tension (min-, max-ST) by Pulsating Bubble Surfactometer, and demonstrated ultrastructures on a series of mixtures with varying concentrations of albumin or fibrinogen a...

متن کامل

Biophysical and physiological properties of a modified porcine surfactant enriched with surfactant protein A.

Surfactant protein A (SP-A), a major protein component of natural pulmonary surfactant, is absent in exogenous surfactants currently used in clinical practice. We investigated the physical and physiological properties of one of these modified natural surfactants (Curosurf) after enrichment with 5% SP-A (SP-A-Curosurf). A pulsating bubble system was used for in vitro assessments and ventilated n...

متن کامل

Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium) in vitro and to identif...

متن کامل

Investigation of the effect of different percentages of material on the microstructure and morphology of montmorillonite nanoparticles

In this research, Montmorillonite clay nanoparticles were produced using mechanical methods and the effect of different percentages of tetra n-butyl ammonium chloride (TNBAC) as a surfactant and butyl ammonium chloride as a modifier (TNBAC) was performed. The microstructural and morphological properties of montmorillonite clay nanoparticles in the presence and absence of surfactant as well as s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Korean Medical Science

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1996